
– LPI 101 –

Use Streams, Pipes, and Redirects [3]
(Linux Professional Institute Certification)

a

.˜. by: Andrew Eager

/V\ andy@linuxivr.com

// \\

@._.@

$Id: gl1.103.4.slides.tex,v 1.2 2003/05/29 14:10:18 geoffr Exp $

aCopyright c� 2002,2003 Andrew Eager, Geoffrey Robertson. Permission is granted to

make and distribute verbatim copies or modified versions of this document provided that this

copyright notice and this permission notice are preserved on all copies under the terms of the

GNU General Public License as published by the Free Software Foundation—either version 2

of the License or (at your option) any later version.

1



Objective

Candidate should be able to redirect streams and connect them in order to

efficiently process textual data. Tasks include redirecting standard input,

standard output, and standard error, piping the output of one command to

the input of another command, using the output of one command as

arguments to another command and sending output to both stdout and a file.

2



Key files, terms, and utilities

tee

xargs

<

<<

>

>>

|

‘‘

3



Resources of interest

4



STDIN, STDOUT & STDERR

� When a process is run it needs 3 things:

– An input device (ie a keyboard)

– An output device (ie a screen)

– An error device - somewhere to send critical errors (normally the

screen)

� Every process has 3 file descriptors

– fd 0 is for input

– fd 1 is for normal output

– fd 2 is for error/abnormal output

� By default these devices all default to your current tty

5



Default File Descriptor Assignments

1

2
0

process

stdin

stderr

stdout

� fd 0 == stdin (keyboard)

� fd 1 == stdout (screen)

� fd 2 == stderr (screen)

6



Redirection & Duplication Operators

� There are 3 operators used for redirection:

– File redirects: ( � , � and � � operators)

– Pipelines ( � operator)

– File descriptor duplication ( � & operator)

7



File Redirect Operators

Each of the 3 file descriptors can be redirected to/from files as follows:

0

1

2

From file to fd 0

From fd 1 to file

From fd 2 to file>2

(Replace > with >> to append to a file)

>

< 

Operator      Action

Note that the redirect operators work with the file descriptors (0, 1 or 2) and

not with the physical device itself (/dev/tty).

8



Pipeline Redirect Operator

Consider the command cmd1 | cmd2. The pipe operator takes data sent

to stdout by cmd1 and sends it to the input file descriptor (fd 0) of cmd2:

1

2
0

cmd2

stdout

Note that the pipe connects stdout (which may or may not be associated

with fd 1) to fd 0 of the next command.

9



Example of the Pipeline Operator

stdin

1

2

cmd1

0

1

2

cmd2

0

stdout

stderr

stderr

cmd1 | cmd 2

Piping output of cmd1 into input of cmd2

10



File Descriptor Duplication Operator

A file descriptor can be made to be a copy of another descriptor. Consider

the command cmd 2 � &1. This will make fd 2 become a copy of fd 1.

cmd 2>&1

fd 2 becomes a copy of fd 1

1

2
0

cmd

Duplicating a file descriptor

11



Examples of File Output Redirection

For the following examples, we use the two example files good and

nofile created thus:

$ echo "This is good" > good ���

$ rm nofile ���

And to test what output is going where, we use the following command line:

$ cat good nofile � �

which will produce:

This is good (stdout)

cat: nofile: No such file or directory (stderr)

12



Standard File Output Redirection

1

2

cat

0

out.txt

err.txt

1

2

cat

0

"This is good"

"cat: nofile: No such file or directory"

cat good nofile 2> err.txt

"This is good"

"cat: nofile: No such file or directory"

cat good nofile > out.txt

Redirecting stdout & stderr to different files

13



Output Redirection - Two at once

out.txt

1

2

cat

0

err.txt

cat good nofile > out.txt 2> err.txt

"cat: nofile: No such file or directory"

"This is good"

Redirecting stdout & stderr at the same time

14



Redirecting stdout & stderr

1

2

cat

0 cat good nofile > out−err.txt

out−err.txt

1

2

cat

0 cat good nofile > out−err.txt  2>&1

out−err.txt

out−err.txt
fd 2 becomes a copy of fd 1

Redirecting stdout & stderr to the same file

15



Duplicating before & after redirection

out−err.txt

1

2

cat

0

cat good nofile   2>&1  > out−err.txt

fd 2 becomes a copy of fd 1

out−err.txt

out−err.txt

cat good nofile > out−err.txt   2>&1

fd 2 becomes a copy of fd 1

1

2

cat

0

Just when you duplicate the fd is significant

16



Piping stdout to stdin

1

2

cat

0

out.txt

"This is good"

cat good nofile | sed −n p > out.txt

"cat: nofile: No such file or directory"

1

2
0

sed

Normal pipe from cat to sed

17



Piping stdout & stderr to stdin

out−err.txt

1

2

cat

0

cat good nofile 2>&1

1 2

1

2
0

sed

cat good nofile 2>&1 | sed −n −p > out−err.txt

1

2

cat

0

3

1

2

cat

0

cat good nofile

18



Piping stderr to stdin

1

2

cat

0

1

2

cat

0

1

2

cat

0

/dev/null

1

2
0

sed
err.txt

cat good nofile cat good nofile 2>&1

1 2

3

cat good nofile 2>&1 >/dev/null | sed −n p > err.txt

19



File Redirection Summary

� Redirect stdin from file:

– $ cat < input.txt ���

� Redirect stdout to file:

– $ cat good nofile > out.txt � �

� Redirect stderr to file:

– $ cat good nofile 2> err.txt ���

� Redirect stdout & stderr to file:

– $ cat good nofile > out-err.txt 2>&1 ���

OR

– $ cat good nofile 2> out-err.txt 1>&2 � �
20



File Redirection Summary

To append to a file instead of overwriting, simply replace � with � �

� Redirect stdout to file (append):

– $ cat good nofile >> out.txt ���

� Redirect stderr to file (append):

– $ cat good nofile 2>> err.txt � �

� Redirect stdout & stderr to file (append):

– $ cat good nofile >> out-err.txt 2>&1 � �

OR

– $ cat good nofile 2>> out-err.txt 1>&2 ���
21



Pipe Redirection Summary

� Pipe stdout to stdin:

– $ cat good nofile | sed -n p ���

� Pipe stdout & stderr to stdin

– $ cat good nofile 2>&1 | sed -n p ���

� Pipe stderr to stdin

– $ cat good nofile 2>&1 >/dev/null | sed -n p

� �

22



A cool example - Swap stdout & stderr

In this example, we are going to swap stdout & stderr by using a temporary

fd as a holding buffer:

If we execute the command using a normal pipe:

$ cat good nofile | sed -n -p > stdout.txt � �

cat: nofile: No such file or directory

Now if we swap stdout & stderr:

$ cat good nofile 255>&1 1>&2 2>&255 | sed -n -p >

stdout.txt � �

This is good

23



The End

24


