
File Permissions

� An access control mechanism

Based on relation between file & user

Analogy:

– Documents receive classification

– Employees receive clearance

– Access to a particular document is determined by the documents

classification and the employees clearance

1

File Permissions

� An access control mechanism

� Based on relation between file & user

Analogy:

– Documents receive classification

– Employees receive clearance

– Access to a particular document is determined by the documents

classification and the employees clearance

1-a

File Permissions

� An access control mechanism

� Based on relation between file & user

� Analogy:

– Documents receive classification

– Employees receive clearance

– Access to a particular document is determined by the documents

classification and the employees clearance

1-b

File Permissions

� An access control mechanism

� Based on relation between file & user

� Analogy:

– Documents receive classification

– Employees receive clearance

– Access to a particular document is determined by the documents

classification and the employees clearance

1-c

File Permissions

� An access control mechanism

� Based on relation between file & user

� Analogy:

– Documents receive classification

– Employees receive clearance

– Access to a particular document is determined by the documents

classification and the employees clearance

1-d

File Permissions

� An access control mechanism

� Based on relation between file & user

� Analogy:

– Documents receive classification

– Employees receive clearance

– Access to a particular document is determined by the documents

classification and the employees clearance

1-e

File Permissions

� A file has 3 modes of access:

– Read (r) - Can view the file

– Write (w) - Can change the file

– Execute (x) - Can run the file (program)

2

File Permissions

� A file has 3 modes of access:

– Read (r) - Can view the file

– Write (w) - Can change the file

– Execute (x) - Can run the file (program)

2-a

File Permissions

� A file has 3 modes of access:

– Read (r) - Can view the file

– Write (w) - Can change the file

– Execute (x) - Can run the file (program)

2-b

File Permissions

� A file has 3 modes of access:

– Read (r) - Can view the file

– Write (w) - Can change the file

– Execute (x) - Can run the file (program)

2-c

File Permissions

� A file can be accessed by 3 different types of people:

– The file owner or user (u)

– A member of the files group (g)

– Anyone else or others (o)

3

File Permissions

� A file can be accessed by 3 different types of people:

– The file owner or user (u)

– A member of the files group (g)

– Anyone else or others (o)

3-a

File Permissions

� A file can be accessed by 3 different types of people:

– The file owner or user (u)

– A member of the files group (g)

– Anyone else or others (o)

3-b

File Permissions

� A file can be accessed by 3 different types of people:

– The file owner or user (u)

– A member of the files group (g)

– Anyone else or others (o)

3-c

Directory Permissions

� Directories are treated in the same way as files

They have an associated owner

They have an associated group

The permissions do slightly different things

– Read (r) - Can view the contents of directory (ls)

– Write (w) - Can add, delete, rename files

– Execute (x) - Can ’cd’ into the directory and open files in it or its

subdirectories

4

Directory Permissions

� Directories are treated in the same way as files

� They have an associated owner

They have an associated group

The permissions do slightly different things

– Read (r) - Can view the contents of directory (ls)

– Write (w) - Can add, delete, rename files

– Execute (x) - Can ’cd’ into the directory and open files in it or its

subdirectories

4-a

Directory Permissions

� Directories are treated in the same way as files

� They have an associated owner

� They have an associated group

The permissions do slightly different things

– Read (r) - Can view the contents of directory (ls)

– Write (w) - Can add, delete, rename files

– Execute (x) - Can ’cd’ into the directory and open files in it or its

subdirectories

4-b

Directory Permissions

� Directories are treated in the same way as files

� They have an associated owner

� They have an associated group

� The permissions do slightly different things

– Read (r) - Can view the contents of directory (ls)

– Write (w) - Can add, delete, rename files

– Execute (x) - Can ’cd’ into the directory and open files in it or its

subdirectories

4-c

Directory Permissions

� Directories are treated in the same way as files

� They have an associated owner

� They have an associated group

� The permissions do slightly different things

– Read (r) - Can view the contents of directory (ls)

– Write (w) - Can add, delete, rename files

– Execute (x) - Can ’cd’ into the directory and open files in it or its

subdirectories

4-d

Directory Permissions

� Directories are treated in the same way as files

� They have an associated owner

� They have an associated group

� The permissions do slightly different things

– Read (r) - Can view the contents of directory (ls)

– Write (w) - Can add, delete, rename files

– Execute (x) - Can ’cd’ into the directory and open files in it or its

subdirectories

4-e

Directory Permissions

� Directories are treated in the same way as files

� They have an associated owner

� They have an associated group

� The permissions do slightly different things

– Read (r) - Can view the contents of directory (ls)

– Write (w) - Can add, delete, rename files

– Execute (x) - Can ’cd’ into the directory and open files in it or its

subdirectories

4-f

USERS & GROUPS

� A user is any one person (one & only one)

A group consists of one or more users

A user may be a member of more than one group

5

USERS & GROUPS

� A user is any one person (one & only one)

� A group consists of one or more users

A user may be a member of more than one group

5-a

USERS & GROUPS

� A user is any one person (one & only one)

� A group consists of one or more users

� A user may be a member of more than one group

5-b

USERS & GROUPS

fred

wilma

barney

betty

pebbles

bambam

wilma

barney

betty

pebbles

fred fred

wilma

barney

betty

bambam

USERS

GROUP

FLINSTONES

GROUPS

FLINFOLKS

6

ls -l is your friend

� All of the file’s attributes can be examined using the ls -l command

$ ls -l rubbles*

-rwxrw---x 1 barney flinstones 16345 Nov15 08:45 rubbles.txt

$

− rwx rw− −−x 1 barney flinstones 16345 Nov 15 08:45 rubbles.txt

Owner Others
PermissionsPernissions Owner Group

Associated Associated

(Bytes)
File Size

Date / Time
Creation

Filename
Group

Type Permissions
File

7

ls -l is your friend

� All of the file’s attributes can be examined using the ls -l command

$ ls -l rubbles*

-rwxrw---x 1 barney flinstones 16345 Nov15 08:45 rubbles.txt

$

− rwx rw− −−x 1 barney flinstones 16345 Nov 15 08:45 rubbles.txt

Owner Others
PermissionsPernissions Owner Group

Associated Associated

(Bytes)
File Size

Date / Time
Creation

Filename
Group

Type Permissions
File

7-a

ls -l is your friend

� All of the file’s attributes can be examined using the ls -l command

$ ls -l rubbles*

-rwxrw---x 1 barney flinstones 16345 Nov15 08:45 rubbles.txt

$

− rwx rw− −−x 1 barney flinstones 16345 Nov 15 08:45 rubbles.txt

Owner Others
PermissionsPernissions Owner Group

Associated Associated

(Bytes)
File Size

Date / Time
Creation

Filename
Group

Type Permissions
File

7-b

Numeric Equivalents

� Each of the permission bits are bitmapped as follows:

8

Numeric Equivalents

� Each of the permission bits are bitmapped as follows:

8-a

− − x 1

r w x 7

r w − 6

r − x 5

r − − 4

− w x 3

− w − 2

− − − 0

r w x Value

SGIDSUID Write ExecRead

 (r) (w) (x)

Write ExecRead

 (r) (w) (x)

Write ExecRead

 (r) (w) (x)

4 2 1400 200 100 40 20 10

 (S/s) (S/s) (T/t)

Sticky

2000 1000

Special Bits User (U) Group (G) Other (O)

4000

9

− − x 1

r w x 7

r w − 6

r − x 5

r − − 4

− w x 3

− w − 2

− − − 0

r w x Value

SGIDSUID Write ExecRead

 (r) (w) (x)

Write ExecRead

 (r) (w) (x)

Write ExecRead

 (r) (w) (x)

4 2 1400 200 100 40 20 10

 (S/s) (S/s) (T/t)

Sticky

2000 1000

Special Bits User (U) Group (G) Other (O)

4000

9-a

chown & chgrp

� A file’s owner can be changed using chown:

ls -l rubble.txt

-rw-rw-r-- 1 barney flinstones ... rubble.txt

chown fred rubble.txt

ls -l rubble.txt

-rw-rw-r-- 1 fred flinstones ... rubble.txt

10

chown & chgrp

� A file’s owner can be changed using chown:

ls -l rubble.txt

-rw-rw-r-- 1 barney flinstones ... rubble.txt

chown fred rubble.txt

ls -l rubble.txt

-rw-rw-r-- 1 fred flinstones ... rubble.txt

10-a

chown & chgrp

� A file’s owner & group can also be changed using chown:

ls -l rubble.txt

-rw-rw-r-- 1 barney flinstones ... rubble.txt

chown fred:flinfolks rubble.txt

ls -l rubble.txt

-rw-rw-r-- 1 fred flinfolks ... rubble.txt

11

chown & chgrp

� A file’s owner & group can also be changed using chown:

ls -l rubble.txt

-rw-rw-r-- 1 barney flinstones ... rubble.txt

chown fred:flinfolks rubble.txt

ls -l rubble.txt

-rw-rw-r-- 1 fred flinfolks ... rubble.txt

11-a

chown & chgrp

� To change only the group use chgrp:

ls -l rubble.txt

-rw-rw-r-- 1 barney flinstones ... rubble.txt

chgrp flinfolks rubble.txt

ls -l rubble.txt

-rw-rw-r-- 1 barney flinfolks ... rubble.txt

12

chown & chgrp

� To change only the group use chgrp:

ls -l rubble.txt

-rw-rw-r-- 1 barney flinstones ... rubble.txt

chgrp flinfolks rubble.txt

ls -l rubble.txt

-rw-rw-r-- 1 barney flinfolks ... rubble.txt

12-a

chmod

� chmod is used to change file permissions

Permissions can be specified:

– In absolute form - Use octal specification

– Surgicaly - Use who/how/what specification

13

chmod

� chmod is used to change file permissions

� Permissions can be specified:

– In absolute form - Use octal specification

– Surgicaly - Use who/how/what specification

13-a

chmod

� chmod is used to change file permissions

� Permissions can be specified:

– In absolute form - Use octal specification

– Surgicaly - Use who/how/what specification

13-b

chmod

� chmod is used to change file permissions

� Permissions can be specified:

– In absolute form - Use octal specification

– Surgicaly - Use who/how/what specification

13-c

chmod - Octal specification

When using an octal specification, you must set the permissions for each of

the user, group and other in one go:

$ chmod 0543 test.txt

$ ls -l test.txt

-r-xr---wx 1 andy andy ... test.txt

14

chmod - Octal specification

When using an octal specification, you must set the permissions for each of

the user, group and other in one go:

$ chmod 0543 test.txt

$ ls -l test.txt

-r-xr---wx 1 andy andy ... test.txt

14-a

chmod - who/how/what specification

Who may be one of:

� u - The file’s owner (user)

g - The file’s group

o - Other users (world)

a - All three of them

15

chmod - who/how/what specification

Who may be one of:

� u - The file’s owner (user)

� g - The file’s group

o - Other users (world)

a - All three of them

15-a

chmod - who/how/what specification

Who may be one of:

� u - The file’s owner (user)

� g - The file’s group

� o - Other users (world)

a - All three of them

15-b

chmod - who/how/what specification

Who may be one of:

� u - The file’s owner (user)

� g - The file’s group

� o - Other users (world)

� a - All three of them

15-c

chmod - who/how/what specification

How may be one of:

� + Add permission, existing unaffected

- Remove permission, existing unaffected

= Set permission, existing replaced

16

chmod - who/how/what specification

How may be one of:

� + Add permission, existing unaffected

� - Remove permission, existing unaffected

= Set permission, existing replaced

16-a

chmod - who/how/what specification

How may be one of:

� + Add permission, existing unaffected

� - Remove permission, existing unaffected

� = Set permission, existing replaced

16-b

chmod - who/how/what specification

What may be one of:

� r - Read permission

w - Write permission

x - Execute permission

17

chmod - who/how/what specification

What may be one of:

� r - Read permission

� w - Write permission

x - Execute permission

17-a

chmod - who/how/what specification

What may be one of:

� r - Read permission

� w - Write permission

� x - Execute permission

17-b

chmod - what specification

Some examples:

Add execute permission for the file’s owner (and leave everything else)

chmod u+x file.txt ���

Remove write permission from group and others (and leave everything else)

chmod go-w file.txt

Set the file to read only for everyone (kills existing permissions)

chmod a=r file.txt

18

chmod - what specification

Some examples:

Add execute permission for the file’s owner (and leave everything else)

chmod u+x file.txt ���
Remove write permission from group and others (and leave everything else)

chmod go-w file.txt ���

Set the file to read only for everyone (kills existing permissions)

chmod a=r file.txt

18-a

chmod - what specification

Some examples:

Add execute permission for the file’s owner (and leave everything else)

chmod u+x file.txt ���
Remove write permission from group and others (and leave everything else)

chmod go-w file.txt ���
Set the file to read only for everyone (kills existing permissions)

chmod a=r file.txt ���

18-b

umask

� When a file is created, the system needs to know what permissions to
assign to the newly created file. This is done using ’umask’

You set the bits in umask that you dont want set on any newly created
file.

A newly created file will never have the execute bit set, regardless of
the value of umask.

For example, a umask of 0022 will ensure that write access is not
granted to group and others.

$ umask 0022

$ touch test.txt

$ ls -l test.txt

-rw-r--r-- 1 andy andy ... test.txt

19

umask

� When a file is created, the system needs to know what permissions to
assign to the newly created file. This is done using ’umask’

� You set the bits in umask that you dont want set on any newly created
file.

A newly created file will never have the execute bit set, regardless of
the value of umask.

For example, a umask of 0022 will ensure that write access is not
granted to group and others.

$ umask 0022

$ touch test.txt

$ ls -l test.txt

-rw-r--r-- 1 andy andy ... test.txt

19-a

umask

� When a file is created, the system needs to know what permissions to
assign to the newly created file. This is done using ’umask’

� You set the bits in umask that you dont want set on any newly created
file.

� A newly created file will never have the execute bit set, regardless of
the value of umask.

For example, a umask of 0022 will ensure that write access is not
granted to group and others.

$ umask 0022

$ touch test.txt

$ ls -l test.txt

-rw-r--r-- 1 andy andy ... test.txt

19-b

umask

� When a file is created, the system needs to know what permissions to
assign to the newly created file. This is done using ’umask’

� You set the bits in umask that you dont want set on any newly created
file.

� A newly created file will never have the execute bit set, regardless of
the value of umask.

� For example, a umask of 0022 will ensure that write access is not
granted to group and others.

$ umask 0022

$ touch test.txt

$ ls -l test.txt

-rw-r--r-- 1 andy andy ... test.txt

19-c

umask

� When a file is created, the system needs to know what permissions to
assign to the newly created file. This is done using ’umask’

� You set the bits in umask that you dont want set on any newly created
file.

� A newly created file will never have the execute bit set, regardless of
the value of umask.

� For example, a umask of 0022 will ensure that write access is not
granted to group and others.

$ umask 0022

$ touch test.txt

$ ls -l test.txt

-rw-r--r-- 1 andy andy ... test.txt

19-d

Setuid bit (4000)

The setuid bit is represented by a ’S’ in the user/executable field in the file

permissions if the file is not executable or by a ’s’ in that field if the file is

executable:

-rwSrw-rw- --> Setuid bit set, not executable

-rwsrw-rw- --> Setuid bit set, executable

20

Setuid bit (4000)

The setuid bit is represented by a ’S’ in the user/executable field in the file

permissions if the file is not executable or by a ’s’ in that field if the file is

executable:

-rwSrw-rw- --> Setuid bit set, not executable

-rwsrw-rw- --> Setuid bit set, executable

20-a

Setuid bit (4000)

The setuid bit is only used for files:

Files:

The user executing the file gains the privileges of the file’s owner for the

duration of that process’ run life. For example, a program owned by root

with the setuid bit set (setuid root) when run by a normal user will

gain root privileges for the purposes of that process. It changes the effective

user. One exception: Setuid is ignored if the executable file is a script

(security)

Directories:

The setuid bit is ignored completely on directories.

21

Setuid bit (4000)

The setuid bit is only used for files:

Files:

The user executing the file gains the privileges of the file’s owner for the

duration of that process’ run life. For example, a program owned by root

with the setuid bit set (setuid root) when run by a normal user will

gain root privileges for the purposes of that process. It changes the effective

user. One exception: Setuid is ignored if the executable file is a script

(security)

Directories:

The setuid bit is ignored completely on directories.

21-a

Setuid bit (4000)

The setuid bit is only used for files:

Files:

The user executing the file gains the privileges of the file’s owner for the

duration of that process’ run life. For example, a program owned by root

with the setuid bit set (setuid root) when run by a normal user will

gain root privileges for the purposes of that process. It changes the effective

user. One exception: Setuid is ignored if the executable file is a script

(security)

Directories:

The setuid bit is ignored completely on directories.

21-b

Setuid bit - Example

$ ls -l hexdump

-rwxr-xr-x 1 root root ... hexdump

$ ls -l /dev/hda1

brw-rw---- 1 root disk ... /dev/hda1

$ hexdump -n 10 /dev/hda1

hexdump: /dev/hda1: Permission denied

chmod 4755 hexdump

ls -l hexdump

-rwsr-xr-x 1 root root ... hexdump

$ hexdump -n 10 /dev/hda1

0000000 ace9 4100 4a50 5726 1a4e

22

Setuid bit - Example

$ ls -l hexdump

-rwxr-xr-x 1 root root ... hexdump

$ ls -l /dev/hda1

brw-rw---- 1 root disk ... /dev/hda1

$ hexdump -n 10 /dev/hda1

hexdump: /dev/hda1: Permission denied

chmod 4755 hexdump

ls -l hexdump

-rwsr-xr-x 1 root root ... hexdump

$ hexdump -n 10 /dev/hda1

0000000 ace9 4100 4a50 5726 1a4e

22-a

Setuid bit - Example

$ ls -l hexdump

-rwxr-xr-x 1 root root ... hexdump

$ ls -l /dev/hda1

brw-rw---- 1 root disk ... /dev/hda1

$ hexdump -n 10 /dev/hda1

hexdump: /dev/hda1: Permission denied

chmod 4755 hexdump

ls -l hexdump

-rwsr-xr-x 1 root root ... hexdump

$ hexdump -n 10 /dev/hda1

0000000 ace9 4100 4a50 5726 1a4e

22-b

Setgid bit (2000)

The setgid bit is represented by a ’S’ in the group/executable field in the file

permissions if the file is not executable or by a ’s’ in that field if the file is

executable:

-rw-rwSrw- --> Setgid bit set, not executable

-rw-rwsrw- --> Setgid bit set, executable

23

Setgid bit (2000)

The setgid bit is represented by a ’S’ in the group/executable field in the file

permissions if the file is not executable or by a ’s’ in that field if the file is

executable:

-rw-rwSrw- --> Setgid bit set, not executable

-rw-rwsrw- --> Setgid bit set, executable

23-a

Setgid bit (2000)

The setgid bit takes on a different meaning for files & directories:

Files:

The user executing the file gains the privileges of the file’s group for the
duration of that process’ run life. For example, a program with an
associated gropof root with the setgid bit set (setgid root) when run
by a normal user will gain root privileges for the purposes of that process. It
changes the effective group. One exception: Setgid is ignored if the
executable file is a script (security)

Directories:

Any newly created file under a directory with the setgid bit set will have the
group set to that of the group owner of the directory rather than the users
default group.

24

Setgid bit (2000)

The setgid bit takes on a different meaning for files & directories:

Files:

The user executing the file gains the privileges of the file’s group for the
duration of that process’ run life. For example, a program with an
associated gropof root with the setgid bit set (setgid root) when run
by a normal user will gain root privileges for the purposes of that process. It
changes the effective group. One exception: Setgid is ignored if the
executable file is a script (security)

Directories:

Any newly created file under a directory with the setgid bit set will have the
group set to that of the group owner of the directory rather than the users
default group.

24-a

Setgid bit (2000)

The setgid bit takes on a different meaning for files & directories:

Files:

The user executing the file gains the privileges of the file’s group for the
duration of that process’ run life. For example, a program with an
associated gropof root with the setgid bit set (setgid root) when run
by a normal user will gain root privileges for the purposes of that process. It
changes the effective group. One exception: Setgid is ignored if the
executable file is a script (security)

Directories:

Any newly created file under a directory with the setgid bit set will have the
group set to that of the group owner of the directory rather than the users
default group.

24-b

Setgid bit - Example

$ ls -l hexdump

-rwxr-xr-x 1 root root ... hexdump

$ ls -l /dev/hda1

brw-rw---- 1 root disk ... /dev/hda1

$ hexdump -n 10 /dev/hda1

hexdump: /dev/hda1: Permission denied

chmod 2755 hexdump

ls -l hexdump

-rwxr-sr-x 1 root root ... hexdump

$ hexdump -n 10 /dev/hda1

hexdump: /dev/hda1: Permission denied

25

Setgid bit - Example

$ ls -l hexdump

-rwxr-xr-x 1 root root ... hexdump

$ ls -l /dev/hda1

brw-rw---- 1 root disk ... /dev/hda1

$ hexdump -n 10 /dev/hda1

hexdump: /dev/hda1: Permission denied

chmod 2755 hexdump

ls -l hexdump

-rwxr-sr-x 1 root root ... hexdump

$ hexdump -n 10 /dev/hda1

hexdump: /dev/hda1: Permission denied

25-a

Setgid bit - Example

$ ls -l hexdump

-rwxr-xr-x 1 root root ... hexdump

$ ls -l /dev/hda1

brw-rw---- 1 root disk ... /dev/hda1

$ hexdump -n 10 /dev/hda1

hexdump: /dev/hda1: Permission denied

chmod 2755 hexdump

ls -l hexdump

-rwxr-sr-x 1 root root ... hexdump

$ hexdump -n 10 /dev/hda1

hexdump: /dev/hda1: Permission denied

25-b

Setgid bit - Example

chgrp disk hexdump

ls -l hexdump

-rwxr-sr-x 1 root disk hexdump

$ hexdump -n 10 /dev/hda1

0000000 ace9 4100 4a50 5726 1a4e

26

Setgid bit - Example

chgrp disk hexdump

ls -l hexdump

-rwxr-sr-x 1 root disk hexdump

$ hexdump -n 10 /dev/hda1

0000000 ace9 4100 4a50 5726 1a4e

26-a

Sticky bit (1000)

The sticky bit is represented by a ’T’ in the others/executable field in the file

permissions if the file is not executable or by a ’t’ in that fied if the file is

executable:

-rw-rw-rwT --> Sticky bit set, not executable

-rw-rw-rwt --> Sticky bit set, executable

27

Sticky bit (1000)

The sticky bit is represented by a ’T’ in the others/executable field in the file

permissions if the file is not executable or by a ’t’ in that fied if the file is

executable:

-rw-rw-rwT --> Sticky bit set, not executable

-rw-rw-rwt --> Sticky bit set, executable

27-a

Sticky bit (1000)

The sticky bit takes on a different meaning for files & directories:

Files:

Keep programs in swap even after execution. (Historical, not really useful

but maintained for backward compatability)

Directories:

Files in a directory with the sticky bit set can not be deleted by anyone other

than:

The owner of the file

The owner of the directory

The root user

28

Sticky bit (1000)

The sticky bit takes on a different meaning for files & directories:

Files:

Keep programs in swap even after execution. (Historical, not really useful

but maintained for backward compatability)

Directories:

Files in a directory with the sticky bit set can not be deleted by anyone other

than:

The owner of the file

The owner of the directory

The root user

28-a

Sticky bit (1000)

The sticky bit takes on a different meaning for files & directories:

Files:

Keep programs in swap even after execution. (Historical, not really useful

but maintained for backward compatability)

Directories:

Files in a directory with the sticky bit set can not be deleted by anyone other

than:

� The owner of the file

� The owner of the directory

� The root user

28-b

Sticky bit (1000)

[andy@Node4] tmp]$ ls -ld /tmp

drwxrwxrwt 27 root root ... /tmp

[andy@Node4] tmp]$ ls -l andy-temp

-rw-rw-rw- 1 andy andy ... andy-temp

[patsy@Node4] patsy]$ cd /tmp

[patsy@Node4] tmp]$ cat andy-temp

This is Andy’s file

[patsy@Node4] tmp]$ rm andy-temp

rm: cannot unlink ‘andy-temp’: Operation not permitted

[andy@Node4] tmp]$ rm andy-temp

[andy@Node4] tmp]$

29

Sticky bit (1000)

[andy@Node4] tmp]$ ls -ld /tmp

drwxrwxrwt 27 root root ... /tmp

[andy@Node4] tmp]$ ls -l andy-temp

-rw-rw-rw- 1 andy andy ... andy-temp

[patsy@Node4] patsy]$ cd /tmp

[patsy@Node4] tmp]$ cat andy-temp

This is Andy’s file

[patsy@Node4] tmp]$ rm andy-temp

rm: cannot unlink ‘andy-temp’: Operation not permitted

[andy@Node4] tmp]$ rm andy-temp

[andy@Node4] tmp]$

29-a

Sticky bit (1000)

[andy@Node4] tmp]$ ls -ld /tmp

drwxrwxrwt 27 root root ... /tmp

[andy@Node4] tmp]$ ls -l andy-temp

-rw-rw-rw- 1 andy andy ... andy-temp

[patsy@Node4] patsy]$ cd /tmp

[patsy@Node4] tmp]$ cat andy-temp

This is Andy’s file

[patsy@Node4] tmp]$ rm andy-temp

rm: cannot unlink ‘andy-temp’: Operation not permitted

[andy@Node4] tmp]$ rm andy-temp

[andy@Node4] tmp]$

29-b

