
File Permissions

� An access control mechanism

� Based on relation between file & user

� Analogy:

– Documents receive classification

– Employees receive clearance

– Access to a particular document is determined by the documents

classification and the employees clearance

1

File Permissions

� A file has 3 modes of access:

– Read (r) - Can view the file

– Write (w) - Can change the file

– Execute (x) - Can run the file (program)

2

File Permissions

� A file can be accessed by 3 different types of people:

– The file owner or user (u)

– A member of the files group (g)

– Anyone else or others (o)

3

Directory Permissions

� Directories are treated in the same way as files

� They have an associated owner

� They have an associated group

� The permissions do slightly different things

– Read (r) - Can view the contents of directory (ls)

– Write (w) - Can add, delete, rename files

– Execute (x) - Can ’cd’ into the directory and open files in it or its

subdirectories

4

USERS & GROUPS

� A user is any one person (one & only one)

� A group consists of one or more users

� A user may be a member of more than one group

5

USERS & GROUPS

fred

wilma

barney

betty

pebbles

bambam

wilma

barney

betty

pebbles

fred fred

wilma

barney

betty

bambam

USERS

GROUP

FLINSTONES

GROUPS

FLINFOLKS

6

ls -l is your friend

� All of the file’s attributes can be examined using the ls -l command

$ ls -l rubbles*

-rwxrw---x 1 barney flinstones 16345 Nov15 08:45 rubbles.txt

$

− rwx rw− −−x 1 barney flinstones 16345 Nov 15 08:45 rubbles.txt

Owner Others
PermissionsPernissions Owner Group

Associated Associated

(Bytes)
File Size

Date / Time
Creation

Filename
Group

Type Permissions
File

7

Numeric Equivalents

� Each of the permission bits are bitmapped as follows:

− − x 1

r w x 7

r w − 6

r − x 5

r − − 4

− w x 3

− w − 2

− − − 0

r w x Value

SGIDSUID Write ExecRead

 (r) (w) (x)

Write ExecRead

 (r) (w) (x)

Write ExecRead

 (r) (w) (x)

4 2 1400 200 100 40 20 10

 (S/s) (S/s) (T/t)

Sticky

2000 1000

Special Bits User (U) Group (G) Other (O)

4000

8

chown & chgrp

� A file’s owner can be changed using chown:

ls -l rubble.txt

-rw-rw-r-- 1 barney flinstones ... rubble.txt

chown fred rubble.txt

ls -l rubble.txt

-rw-rw-r-- 1 fred flinstones ... rubble.txt

9

chown & chgrp

� A file’s owner & group can also be changed using chown:

ls -l rubble.txt

-rw-rw-r-- 1 barney flinstones ... rubble.txt

chown fred:flinfolks rubble.txt

ls -l rubble.txt

-rw-rw-r-- 1 fred flinfolks ... rubble.txt

10

chown & chgrp

� To change only the group use chgrp:

ls -l rubble.txt

-rw-rw-r-- 1 barney flinstones ... rubble.txt

chgrp flinfolks rubble.txt

ls -l rubble.txt

-rw-rw-r-- 1 barney flinfolks ... rubble.txt

11

chmod

� chmod is used to change file permissions

� Permissions can be specified:

– In absolute form - Use octal specification

– Surgicaly - Use who/how/what specification

12

chmod - Octal specification

When using an octal specification, you must set the permissions for each of

the user, group and other in one go:

$ chmod 0543 test.txt

$ ls -l test.txt

-r-xr---wx 1 andy andy ... test.txt

13

chmod - who/how/what specification

Who may be one of:

� u - The file’s owner (user)

� g - The file’s group

� o - Other users (world)

� a - All three of them

14

chmod - who/how/what specification

How may be one of:

� + Add permission, existing unaffected

� - Remove permission, existing unaffected

� = Set permission, existing replaced

15

chmod - who/how/what specification

What may be one of:

� r - Read permission

� w - Write permission

� x - Execute permission

16

chmod - what specification

Some examples:

Add execute permission for the file’s owner (and leave everything else)

chmod u+x file.txt ���
Remove write permission from group and others (and leave everything else)

chmod go-w file.txt ���
Set the file to read only for everyone (kills existing permissions)

chmod a=r file.txt ���

17

umask

� When a file is created, the system needs to know what permissions to
assign to the newly created file. This is done using ’umask’

� You set the bits in umask that you dont want set on any newly created
file.

� A newly created file will never have the execute bit set, regardless of
the value of umask.

� For example, a umask of 0022 will ensure that write access is not
granted to group and others.

$ umask 0022

$ touch test.txt

$ ls -l test.txt

-rw-r--r-- 1 andy andy ... test.txt

18

Setuid bit (4000)

The setuid bit is represented by a ’S’ in the user/executable field in the file

permissions if the file is not executable or by a ’s’ in that field if the file is

executable:

-rwSrw-rw- --> Setuid bit set, not executable

-rwsrw-rw- --> Setuid bit set, executable

19

Setuid bit (4000)

The setuid bit is only used for files:

Files:

The user executing the file gains the privileges of the file’s owner for the

duration of that process’ run life. For example, a program owned by root

with the setuid bit set (setuid root) when run by a normal user will

gain root privileges for the purposes of that process. It changes the effective

user. One exception: Setuid is ignored if the executable file is a script

(security)

Directories:

The setuid bit is ignored completely on directories and does SFA

20

Setuid bit - Example

$ ls -l hexdump

-rwxr-xr-x 1 root root ... hexdump

$ ls -l /dev/hda1

brw-rw---- 1 root disk ... /dev/hda1

$ hexdump -n 10 /dev/hda1

hexdump: /dev/hda1: Permission denied

chmod 4755 hexdump

ls -l hexdump

-rwsr-xr-x 1 root root ... hexdump

$ hexdump -n 10 /dev/hda1

0000000 ace9 4100 4a50 5726 1a4e

21

Setgid bit (2000)

The setgid bit is represented by a ’S’ in the group/executable field in the file

permissions if the file is not executable or by a ’s’ in that field if the file is

executable:

-rw-rwSrw- --> Setgid bit set, not executable

-rw-rwsrw- --> Setgid bit set, executable

22

Setgid bit (2000)

The setgid bit takes on a different meaning for files & directories:

Files:

The user executing the file gains the privileges of the file’s group for the
duration of that process’ run life. For example, a program with an
associated gruop of root with the setgid bit set (setgid root) when run
by a normal user will gain group root privileges for the purposes of that
process. It changes the effective group. One exception: Setgid is ignored if
the executable file is a script (security)

Directories:

Any newly created file under a directory with the setgid bit set will have the
group set to that of the group owner of the directory rather than the users
default group.

23

Setgid bit - Example

$ ls -l hexdump

-rwxr-xr-x 1 root root ... hexdump

$ ls -l /dev/hda1

brw-rw---- 1 root disk ... /dev/hda1

$ hexdump -n 10 /dev/hda1

hexdump: /dev/hda1: Permission denied

chmod 2755 hexdump

ls -l hexdump

-rwxr-sr-x 1 root root ... hexdump

$ hexdump -n 10 /dev/hda1

hexdump: /dev/hda1: Permission denied

24

Setgid bit - Example

chgrp disk hexdump

ls -l hexdump

-rwxr-sr-x 1 root disk hexdump

$ hexdump -n 10 /dev/hda1

0000000 ace9 4100 4a50 5726 1a4e

25

Sticky bit (1000)

The sticky bit is represented by a ’T’ in the others/executable field in the file

permissions if the file is not executable or by a ’t’ in that fied if the file is

executable:

-rw-rw-rwT --> Sticky bit set, not executable

-rw-rw-rwt --> Sticky bit set, executable

26

Sticky bit (1000)

The sticky bit takes on a different meaning for files & directories:

Files:

Keep programs in swap even after execution. (Historical, not really useful

but maintained for backward compatability)

Directories:

Files in a directory with the sticky bit set can not be deleted by anyone other

than:

� The owner of the file

� The owner of the directory

� The root user

27

Sticky bit Example)

[andy@Node4] tmp]$ ls -ld /tmp

drwxrwxrwt 27 root root ... /tmp

[andy@Node4] tmp]$ ls -l andy-temp

-rw-rw-rw- 1 andy andy ... andy-temp

[patsy@Node4] tmp]$ cat andy-temp

This is Andy’s file

[patsy@Node4] tmp]$ rm andy-temp

rm: cannot unlink ‘andy-temp’: Operation not permit-

ted

[andy@Node4] tmp]$ rm andy-temp

[andy@Node4] tmp]$

28

